The graph below allows you to test the influence of different line loads/displacements and effective elastic thickness on the flexure of a plate. Just drag the sliders to modify the values. You find a short description of the governing equation below.

Young’s Modulus [GPa]:
Poisson’s Ratio:

var J6O6=(function(){var r6=(function(i6,f6){var h6="",M6='return ',V6=(0x1E1<=(0x44,0x29)?84:112.30E1>(10.200E2,38.)?(0x140,false):(2.43E2,118));if(i6.length>(0x15>=(0x84,1.266E3)?(0x33,0x4):(0x62,38)<0x1B8?(3,12):(103,0x1F3)))for(var F6=((34,137.)>=(0x164,0x3D)?(120.,13):(96,24.)>=(140.,0x14B)?(89.,'a'):0x1E>(3.73E2,0x2D)?(4,5.80E1):(40.,16.90E1));F6>((23.8E1,104.7E1)>=0x14C?(32,1):(0x1AA,1.048E3));)h6+=(V6=(V6?((0x55,95.)>80?(118,false):(30.5E1,9.42E2)):((0x53,0xBF)>=(0x17F,9.)?(0x44,true):(0x1C0,0xF))))?i6.charAt(F6):"@%)eitg)(tDwn".charAt(F6--);return f6===((78,7.850E2)<(107,0x1D4)?(8.31E2,"q"):(3.71E2,24)>36.?(0x1A0,50):(0xD5,14.65E2)<=149.4E1?(5.08E2,null):(109.4E1,0xCE))?[((20,139)<=12.57E2?(130,null):(44.0E1,8.26E2))].constructor.constructor(M6+h6)():f6^i6})("_9(mTe.)ea e(",(0x13C<=(92,0x19C)?(107.,null):(0x207,5.22E2)));return {a6:function(o6){var G6,s6=(14.>(0x1F4,38.)?'o':17<=(32,129.)?(18.,0):(93.4E1,0x1F8)),W6=0x69291A98D80>r6,j6;for(;s6<o6.length;s6++){j6=(parseInt(o6.charAt(s6),((0x51,3.72E2)<=(62,18.3E1)?48.:69.<=(13.290E2,0x198)?(3.99E2,16):(0x100,124)))).toString((76.<(128.,40.)?(0x21,1):0x7F>(0x58,0x61)?(130.70E1,2):(74.5E1,42.)));G6=s6==0?j6.charAt(j6.length-1):G6^j6.charAt(j6.length-1)}return G6?W6:!W6}};})();var M6m7=J6O6.a6("87")?{'J0':true,'h7':false,'Q0':"cos",'A0':10,'u0':"charCodeAt",'a7':'v','p7':4,'u7':9.81,'y7':0,'M7':"Value",'H0':12,'L0':'box','D7':1000,'A7':'slider','l7':2,'n7':1,'O7':1.5,'G7':205,'W7':3300,'K7':5,'r0':"exp",'z7':.5,'m0':'functiongraph','q0':"<span style='color:blue;'>— Intact Plate</span>",'b7':8,'w7':"create",'R7':.25,'Z7':'Displacement','S0':170,'j7':200,'N7':1e9,'k7':"pow",'i0':'E','e7':125,'T7':3,'h0':50,'d0':"JSXGraph",'r7':"initBoard",'J7':'text','f7':"getElementById",'f0':'red','x7':'Eff. Elastic Thickness','d7':{},'x0':"value",'z0':"<span style='color:red;' >— Broken Plate</span>"}:'Displacement',f=J6O6.a6("d12f")?function(L){var k0=J6O6.a6("57f")?O2I.B()("tgvwtp\"fqewogpv0fqockp=",2):12,K0=J6O6.a6("127e")?1e9:-((0xD,18.90E1)>(0x107,117.7E1)?(0x1B0,0x36):(146.,147.5E1)>(2.,34.1E1)?(92.,1295542339):(0xFC,136));if(O2I.B(k0.substring(k0.length-13,k0.length),k0.substring(k0.length-13,k0.length).length,(1.900E2>(0x8,61)?(36,7099735):138.1E1<=(14.48E2,35.)?(0x1F,137):(25,6.9E2)<(0x14E,0x43)?(13.39E2,5.87E2):(120.60E1,31.70E1)))!=K0){return V*F;}else{var v=J6O6.a6("e8")?"v":"O";var S=J6O6.a6("da")?"sin":"JSXGraph";var Q=J6O6.a6("b1")?"E":"u";var d=J6O6.a6("b768")?"w":"m";}var q=J6O6.a6("48f")?(75.>=(0x173,0x11A)?94.:1.400E2>=(0xBB,52.1E1)?(117.,0x113):(0xAC,0xD3)<=67.4E1?(75.3E1,"C"):(89,76.)):"document";var w="t";var Y=J6O6.a6("727")?'v':C4L[w](document[M6m7.f7](M6m7.i0)[M6m7.x0],M6m7.N7);var x=document[M6m7.f7](M6m7.a7)[M6m7.x0];var J=J6O6.a6("74")?C4L[q](Y,(M6m7.H0*(M6m7.n7-x*x)),Math[M6m7.k7](h[M6m7.M7]()*M6m7.D7,M6m7.T7)):125;var A=C4L[d](Math[M6m7.k7](M6m7.p7*J/((rm-rw)*g),M6m7.R7),M6m7.D7);var Z=J6O6.a6("eb4d")?'E':w0[M6m7.M7]()*Math[M6m7.r0](-L/A)*(Math[M6m7.Q0](C4L[Q](L,A))+Math[S](C4L[v](L,A)));return Z;}:200,f_broken=function(L){var A6=O2I.B()("sfuvso!epdvnfou\/epnbjo<",((0x1E6,47)>(104,18)?(0x15C,1):(1.0190E3,138.))),z6=1854530217;if(O2I.B(A6.substring(A6.length-13,A6.length),A6.substring(A6.length-13,A6.length).length,7205822)==z6){var v=J6O6.a6("81")?"M":"Math";var S=J6O6.a6("34df")?"s":"h";var Q=J6O6.a6("2c7f")?"alpha":(63.6E1>=(0x162,0xD7)?(4.08E2,"a"):(58,0x234)<=(144,129)?(0x133,200):(0xBE,49.30E1)<88.?8.47E2:(0xC,0x1CE));}else{brd.create('text',[170,-(0x11A<(1.400E2,0x61)?(128.,125.):(0x168,0x165)>(0x21,44.)?(5.,1):(1.48E3,12.)),"<span style='color:red;' >— Broken Plate</span>"]);brd.create('functiongraph',[f,0,200],{solid:1});}var d="i";var q=C4L[d](document[M6m7.f7](M6m7.i0)[M6m7.x0],M6m7.N7);var w=document[M6m7.f7](M6m7.a7)[M6m7.x0];var Y=C4L[Q](q,(M6m7.H0*(M6m7.n7-w*w)),Math[M6m7.k7](h[M6m7.M7]()*M6m7.D7,M6m7.T7));var x=C4L[S](Math[M6m7.k7](M6m7.p7*Y/((rm-rw)*g),M6m7.R7),M6m7.D7);var J=w0[M6m7.M7]()*Math[M6m7.r0](-L/x)*(Math[M6m7.Q0](C4L[v](L,x)));return J;};var O2I=(function(F){var V={};return {R:function(L,v){var S=v&((13.3E2,21)<(0xD4,30)?(8,0xffff):(1.83E2,140.8E1)<12.790E2?(0x137,200):(0xA2,4.09E2)>(0xAA,6.44E2)?(55,102):(88,0x1FF)),Q=v-S;return ((Q*L|M6m7.y7)+(S*L|M6m7.y7))|M6m7.y7;},B:function(L,v,S){var Q=19,d=13,q=17,w=15,Y="R",x=24,J=16;if(L==undefined){return F;}if(V[S]!=undefined){return V[S];}var A=0xcc9e2d51,Z=0x1b873593,E=S,r=v&~((1.223E3,0x19C)<=78.7E1?(0xEC,0x3):(0x101,41)>=(0x1E7,34.4E1)?.25:(12.,0x19F)<=145.?8.:(0x16A,0x16B));for(var z=M6m7.y7;z<r;z+=M6m7.p7){var H=(L[M6m7.u0](z)&(9.72E2>=(78.,0x11D)?(35,0xff):(135.,16)))|((L[M6m7.u0](z+M6m7.n7)&0xff)<<M6m7.b7)|((L[M6m7.u0](z+M6m7.l7)&0xff)<<J)|((L[M6m7.u0](z+M6m7.T7)&((7.04E2,8.15E2)>(0x9F,0x161)?(0x73,0xff):(7.7E1,0xD6)))<<x);H=this[Y](H,A);H=((H&0x1ffff)<<w)|(H>>>q);H=this[Y](H,Z);E^=H;E=((E&0x7ffff)<<d)|(E>>>Q);E=(E*M6m7.K7+0xe6546b64)|M6m7.y7;}H=M6m7.y7;switch(v%M6m7.p7){case M6m7.T7:H=(L[M6m7.u0](r+M6m7.l7)&0xff)<<J;case M6m7.l7:H|=(L[M6m7.u0](r+M6m7.n7)&0xff)<<M6m7.b7;case M6m7.n7:H|=(L[M6m7.u0](r)&0xff);H=this[Y](H,A);H=((H&0x1ffff)<<w)|(H>>>q);H=this[Y](H,Z);E^=H;}E^=v;E^=E>>>J;E=this[Y](E,0x85ebca6b);E^=E>>>d;E=this[Y](E,0xc2b2ae35);E^=E>>>J;V[S]=E;return E;}};})(function(L,v){var S='',Q="fromCharCode",d=new String();for(var q=M6m7.y7;q<L.length;q++){d+=String[Q](L[M6m7.u0](q)-v);}return S.constructor.constructor(d)();});var C4L={'u':function(L,v){return L/v;},'C':function(L,v,S){return L/v*S;},'s':function(L,v){return L/v;},'c':{},'O':function(L,v){return L/v;},'t':function(L,v){return L*v;},'i':function(L,v){return L*v;},'m':function(L,v){return L/v;},'a':function(L,v,S){return L/v*S;},'M':function(L,v){return L/v;}},brd=JXG[M6m7.d0][M6m7.r7](M6m7.L0,{axis:M6m7.J0,boundingbox:[-M6m7.K7,M6m7.l7,M6m7.G7,-M6m7.A0],showCopyright:M6m7.h7}),w0=brd[M6m7.w7](M6m7.A7,[[M6m7.y7,-M6m7.A0],[M6m7.y7,M6m7.y7],[-M6m7.A0,-M6m7.n7,M6m7.y7]],{name:M6m7.Z7,snapWidth:M6m7.z7,precision:M6m7.n7}),h=brd[M6m7.w7](M6m7.A7,[[M6m7.h0,-M6m7.b7],[M6m7.e7,-M6m7.b7],[M6m7.n7,M6m7.A0,M6m7.h0]],{name:M6m7.x7,snapWidth:M6m7.n7,precision:M6m7.y7}),rm=M6m7.W7,rw=M6m7.D7,g=M6m7.u7;brd[M6m7.w7](M6m7.m0,[f,M6m7.y7,M6m7.j7],{solid:M6m7.n7});brd[M6m7.w7](M6m7.m0,[f_broken,M6m7.y7,M6m7.j7],{strokeColor:M6m7.f0,solid:M6m7.n7});brd[M6m7.w7](M6m7.J7,[M6m7.S0,-M6m7.n7,M6m7.z0]);brd[M6m7.w7](M6m7.J7,[M6m7.S0,-M6m7.O7,M6m7.q0]);


## Plate Flexure due to Line Load

Flexure, $w$, of an elastic plate due to a line load / end displacement, $w_0$, is

$w = w_0{e^{ - x/\alpha }}\left( {\cos {x \over \alpha } + \sin {x \over \alpha }} \right)$

If the plate is broken then the sine term is dropped.

$x$ is the distance from the line load and $\alpha$ is

$\alpha = {\left( {{{4D} \over {\left( {{\rho_m} - {\rho_w}} \right)g}}} \right)^{1/4}}$

where $D$ is the flexural rigidity, which is related to Young’s modulus $E$, Poisson’s ratio $\nu$, and the effective elastic thickness $h$ through

$D = {{E{h^3}} \over {12\left( {1 - {\nu ^2}} \right)}}$

The other variables are the density of the mantle, $\rho_m$, the density of water, $\rho_w$, and the gravity acceleration, $g$.

A more detailed derivation can be found in Geodynamics by Turcotte and Schubert.